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Abstract- In order to develop a constitutive equation for polymeric materials covering a wide class
of deformation processes a three-dimensional nonaffine model has been developed by adopting the
non-Gaussian network theory with the generalized Argon double-kink model of intermolecular
resistance. A phenomenological relation between the non-Gaussian molecular chain network struc
ture and entanglement of chains is formulated and a simple evolutional equation of the number of
entanglements of chains during the deformation process is developed. The validity of the proposed
constitutive equation has been proven through comparison between the predicted results and
experimental results. Furthermore. its application to the deformation analysis of circular polymeric
bars under tension has been discussed

I. INTRODUCTION

Deformation behavior of polymeric material under tension is unique. Necking initially
develops in the specimen and subsequently propagates along the specimen under an essen
tially steady-state condition, of which characteristic feature is technically utilized to produce
tapes, films and fibers. This typical deformation behavior can be phenomenologically
explained by the marked restiffening of the stress-strain relation at a specific point (Hut
chinson and Neale, 1983). The mechanical aspect of this phenomenon has recently received
much attention. Hutchinson and Neale (1983) and Chater and Hutchinson (1984) inves
tigated neck propagation in tension blocks, bulge propagation in long cylindrical balloons
and buckle propagation of tubes under lateral pressure in terms of simple one-dimensional
analysis. In further studies, full finite element analyses for a solid circular bar (Neale and
Tugcu, 1985), plane strain blocks (Fager and Bassani, 1986; Tugcu and Neale, 1987a), and
neck and bulge propagation with respect to circumferential and axial direction (Tomita et
al., 1990) have been conducted. In subsequent studies, the effect of strain rate (Tugcu and
Neale, 1987a,b, 1988) and temperature (Tugcu and Neale, 1990) sensitivities on neck
propagation have been clarified. Tomita and Hayashi (1991, 1993) clarified thermocoupled
elasto-viscoplastic neck propagation behavior.

On the other hand, from the physical point of view, the hardening characteristics in
the glassy polymer are generally explained by the alignment of molecular chains, which are
randomly oriented in the undeformed state and are responsible for neck development and
its propagation, and deformation-induced anisotropy. Rather intensive research has been
carried out on this subject. Several three-dimensional models have been developed by
adopting the non-Gaussian affine network model with the generalized Argon double-kink
model (Argon, 1973). Among them are the three-chain (Boyce et al. 1988; which we shall
term the BPA model). Eight-chain (Arruda and Boyce. 1991, 1993a) and full network
models (Wu and van der Giessen. 1993a). The validity of these models was examined in
terms of the predictability of the experimentally observed deformation behaviors (Arruda
and Boyce, 1991. 1993a; Wu and van der Giessen, 1993a), and it was clarified that the
deformation behavior of polymeric material under tension and compression are well
predicted, whereas substantial differences are observed in simple shear deformation. This
is partially attributed to the difference in the development of internal microstructures,
depending on the stress system induced.
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In the preliminary investigations (Tanaka and Tomita, 1993, 1994), we attempted to
establish a nonaffine network model where the number of entanglements, i.e. connecting
points of molecular chains, changes depending on the local stress system, and discussed the
capability of the prediction of deformation behavior of polymeric material under different
stress systems. Here, in order to develop a constitutive equation covering a wide class of
deformation processes, a relation between the non-Gaussian molecular chain network
structure and entanglements of chains is formulated and a simple evolutional equation of
the number of entanglements of chains during the deformation process is developed. The
validity of proposed constitutive equation and its application to the deformation analysis
of tension in cylindrical polymeric bars will be discussed.

2. CONSTITUTIVE EQUATION

2.1. Affine model
Plastic flow of glassy polymer is assumed to start when stress exceeds the resistances

to rotation of segments of the molecular chain and its alignment. Argon (1973) developed
the constitutive equation for the plastic shear strain rate, yP, which occurs once the isotropic
barrier to chain segment rotation has been overcome:

(I)

where Yo and A are constants, Tis absolute temperature, So = O.OnG/( l-lJ) is the athermal
shear strength, G is the elastic shear modulus, lJ is Poisson's ratio and r is the applied shear
stress. Boyce et al. (1988) extended this expression to include the effect of pressure. They
used S +:t.p instead of SO' where S is the shear stress which evolves with the plastic strain
from So to a stable value, sss, p is the pressure and IX is a pressure-dependent coefficient.
Since s depends on temperature and strain rate, the evolutional equation of s can be
expressed by

(2)

where h is rate of resistance with respect to plastic strain, and Sss is the stable saturation
value of So- Here, in order to duplicate the response of various polymeric materials after
yielding, shown in Fig. I, the value of Sss is adjusted according to the materials (Tomita,
1994).

Once the polymeric materials experience a stress that exceeds their intermolecular
resistance, the molecular chains align along the principal direction of plastic stretch. This
alignment generates the back-stress. The initial structure of the molecular chain networks
is assumed to be isotropic. After yielding, the molecular chains will be stretched and will
tend to align along the principal direction of plastic stretch. The principal component of

Sf, <s

True strain

Fig 1. True stress-natural strain relations with/without work hardening and softening polymeric
materials
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back-stress is taken to the coaxial with the plastic stretch tensor. The principal components
of the back-stress tensor for the eight-chain model (Arruda and Boyce, 1991, 1993a) are

B, = CR)'LL -1(VPjAd(Vf2- VP2)jVPj3

L - I (VP/I.d = x

L(x) = cothx-x 1 = VPj)'L

(3)

where B, is the principal component of back-stress, Vf is principal plastic stretch, ilL = IN
is the locking stretch in tension, N is average number of kinks in a single chain, CR = nkT
is a constant, n is the number of chains in the unit volume, k is Boltzmann's constant, and
L is the Langevin function. In the affine model, the entangled points of molecular chains
are assumed to be the connecting points and their number, in other words, the number of
chains in the unit volume n and the average number of kinks in a single chain N, are
assumed to be unchanged during the deformation. The back-stresses for the three-chain
model (Boyce et al., 1988) and full network model (Wu and van der Giessen, 1993a) have
been derived.

The deformation gradient F from the initially isotropic state of polymer can be decom
posed into the elastic part Fe and plastic part P. P represents the relaxed configuration
obtained by unloading without rotation and permanent orientation of molecular alignment.
In the BPA model (Boyce et al., 1988), the magnitude of the plastic deformation rate tensor
dP is assumed to be given by representative plastic shear strain rate "l, and the direction is
specified by the normalized deviatoric part of driving stress (j*. Then

(4)

where (j is the Cauchy stress tensor, B is the back-stress tensor with principal values B j in
eqn (3). The shear stress T in eqn (l) is estimated by T in eqn (4). The complete elastic
plastic constitutive equation can be established by introducing the elastic constitutive
equation for the elastic part of the deformation rate tensor:

(5)

where Sis the Jaumann rate of Kirchhoff stress, DC is elastic stiffness and d is the deformation
rate tensor. In all computations presented in this investigation, the elastic strain remains
small and all geometrical changes associated with the elastic part of the deformation are
neglected (see Boyce et al., 1988; Wu and van der Giessen, 1993a).

2.2. Nonaffine model
In the BPA and other models, entangled points of polymeric chains are assumed to be

connecting points which are unchanged during the deformation processes. In real defor
mation processes, however, the number of entangled points may increase or decrease
according to the local deformation of the polymeric chain (Botto et al., 1987). Increase of
the entangled points reduces the number of kinks in polymeric chains, which causes the
reduction of extensibility and increase in the relative stiffening of the materials. On the
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Fig 2. Eight-chain model (a) and material element constituting of k] pieces of eight-chain models (b).

other hand, decrease of entangled points causes the opposite effects. According to the eight
chain model shown in Fig. 2(a), the relation between the number of molecular chains and
entangled points will be formulated. Here, a material element consisting of molecular chains
is assumed as a block constituted of k 3 pieces of eight-chain models, as shown in Fig. 2(b).
The corresponding number of chains and entangled points (connecting points) in the block
are n = 8k3 and m = (k + 1)3 +k 3

, respectively. For a sufficiently large number of k, we have

m = n/4. (6)

Next, we assume that the total number of kinks in the blocks is preserved during the
deformation. With total number of kinks in the block NA and average total number of
kinks in a single chain N, the following relation is obtained

(7)

This provides the kink number in a single chain as

(8)

The limiting stretch for a chain is IN and N > I, which specifies the limiting number of
entangled points mult :

(9)

The entanglement situation may change according to the local deformation behavior of
polymeric material.

Here, in order to formulate the evolutional equation of the number of entanglements,
we introduce the molecular chain field shown in Fig. 3. The molecular chain network aligns

1
Chain directi~n /

--"\

2 ,
~I

Fig 3. Hypothetical model of chain-field and orthogonal coordinate system.
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in the principal direction of plastic stretch (Wu and van der Giessen, 1993a), which is
unchanged for uniaxial tension and compression. The first direction of the orthogonal
coordinates shown in Fig. 3 is set to be the direction of maximum principal plastic stretch.
Hereafter, this direction will be called the chain direction. Then we define the orthogonal
coordinate system parallel to the principal direction of plastic stretch tensor shown in Fig.
3. The tensile deformation applied to the chain direction causes the extension of the chain
and increase of the stiffness. It simultaneously reduces the relative distance of adjacent
chains, which may induce the entanglements. The similar situation can be adopted for the
case of compressive deformation perpendicular to the chain direction. On the other hand,
the tensile deformation perpendicular to the chain direction increases the relative distance
ofadjacent chains, which may reduce the entanglements. A similar situation can be expected
for compression parallel to the chain direction. For the shear deformation with respect to
the orthogonal coordinate direction, the direction of the principal plastic stretch rotates,
which causes rotation of the molecular chain network (Wu and van der Giessen, 1993a)
with respect to the remainder. This may cause the disentanglement. The above characteristic
feature of the deformation of the molecular chain network can be summarized as follows

(I) The extension along the chain direction and the compression perpendicular to the
chain direction increase the number of entanglements and vice versa.

(2) The shear deformation parallel to the orthogonal coordinate system reduces the
number of entanglements.

An evolutional equation of the number of entanglements is determined by the local
deformation of the polymer and may be expressed as

(10)

where XI} (T) is the tensor depending on the temperature, and G)i- Ch is the plastic strain rate
tensor with respect to the chain coordinate system. From the above discussion, we may
obtain the following simple concrete form of eqn (10).

This equation implies that the extension along the chain direction and the compression
perpendicular to the chain direction cause the increase of the number of entanglements and
vice versa. The shear deformation, regardless of the direction, reduces the number of
entanglements. Furthermore, assuming that the contributions of normal strain rate and
shear strain rate on the increase or decrease of the number of entanglements are identical,
and considering the limiting number of entanglements, we have

XII = X:2 = X" = ('1(T)(I-m:m u )

XI: = X:3 = X31 = (':(T)(l-m/m l ), (12)

where ('I and (': are temperature-dependent positive constants, and mu ( < mult) and m l are
upper and lower limits of the number of entanglements, respectively. Substitution of eqn
(12) into eqn (II) yields

(13)

With nand N estimated using eqn (6)-(9) and eqn (13), the concrete constitutive equations
for the three-dimensional deformation behavior can be established along the same lines as
eqn (5).
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Fig 4. Computational model of cylindrical specimen under tension (a) and finite element dis
cretization with crossed-triangular elements (b).

3. COMPARISON BETWEEN EXPERIMENTAL RESULTS AND COMPUTATIONAL
PREDICTIONS

3.1. Material parameters
The material parameters for the eight-chain model used by Wu and van der Giessen

(1993a) which were originally defined by Boyce and Arruda (1990) will be employed for
the BPA model. They are E = 2300 MPa, v = 0.30, So = 97.3 MPa, A = 240 K MPa- l

,

Yo = 2.00 X 10 15
S-I, h = 500 MPa, S5' = 73.9 MPa, a = 0.08, CR = 12.8 MPa and N = 2.15.

These values and eqns (6)-(8) with T = 296 K yield N A = 6.73 X 1027 and mo = 7.83 x 1026
.

Due to the lack of experimental results, it is very difficult to identify the values of ml, CI and
C2' Provided mu = mo , m in eqn (13) vanishes and m remains constant for the deformation
without shear, and the corresponding response for uniaxial deformation due to the BPA
model is recovered so that the proposed model with mu = mo is understood to be the
extended version of the BPA model. According to finding (Wu and van der Giessen, 1993b)
that the shear stress at very high strain has an almost identical value despite the different
initial stage of deformation, we determined the constants mJ, Cj and Cz by trial and error such
that the uniform simple shear deformation obtained by integrating constitutive equation (5)
for the nonaffine model coincides with that from experiments (G'Sell and Gopez, 1985) in
the high strain range. The additional parameters introduced in this paper are ml = 0.34 mo

and Cj = Cz = 0.43 mo.

3.2. Computational model
Figure 4 shows the cylindrical bar model employed by Boyce and Arruda (1990) (a)

and finite element discretization with cross triangular elements (b). The deformation analysis
is performed under constant temperature of 296 K and constant end velocity of 2.54 mm
min -1. Figure 5 shows the computational model for simple shearing of the plane strain
block with unit thickness. To reveal the propagation of the shear band observed in the

x

tFN _

L--!s
I

I

----+------ -
I

I

2u
y

2L

Fig 5. Computational model of block under shearing.
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Experimental data
BPAmodel
Proposed model

a 0.5 1.0
True Strain

Fig 6. True stress versus strain relation under uniaxial compression. The experimental results are
from Arruda and Boyce (1993b). The material parameters used for the simulation by using the BPA
model are E = 2300 MPa. \ = 030.\" = 97.3 MPa. A = 240 K MPa -I. )'0 = 2.00 X lOIS S-I. h = 500
MPa. s" = 73.9 MPa.l = 0.08. CR = 12.8 MPa and iV = 2.15. In the proposed model, the material
parameters employed are those for the BPA model plus iVA = 6.73 X 1027

, mo = 7.83 x 10'·, mu = mo ,

111, = 0.341110 and (', = c, = 0.43 111",

experiments, the following initial imperfection ~so in shear strength (Wu and van der
Giessen, 1993b) has been introduced :

(14)

where ( is the initial imperfection. The finite element discretization employed is of a
sufficiently fine uniform mesh with 60 x 12 quadrilaterals consisting of four crossed triangles.
Normalized shear strain r = ujH. shear strain rate t = u/H and shear stress (Js = F,jL are
introduced. The analysis has been performed at constant temperature of 296 K and shear
strain rate t = 0.003 S-I. In order to avoid numerical instability near the softening region,
the magnitude of the time step has been set such that ~}'P = yPM < 0.0025. With this
imperfection, the shear band with high strain evolves at the center of the block and
subsequently develops and extends normal to the shearing direction.

3.3. Results and discussion
Before considering the computational results under non uniform deformation, we will

show the uniaxial true stress--strain relation for the material deformed at T = 296 K with
nominal strain ratei: = 0.0 I S-I in Fig. 6. The experimental results are from Arruda and
Boyce (1993b). The numerical simulation using the BPA model has been performed applying
the same material parameters discussed in section 3.1. As also discussed in section 3.1. the
results obtained from the proposed model with mo = mu completely coincide with those
from the BPA model. and good correspondence with the experimental results is observed.

Next, we will show the results of two-dimensional analysis of tension and shear
deformation. The material parameters employed are the same as those employed in com
pression. Figure 7 shows the load normalized by maximum load (2349 N, obtained by

0.5
Experimental data

BPA model
Proposed model

0.0 0.5 1.0 1.5
Diametral Contraction fmm

Fig 7. Normalized load versus diametral contraction. The notation and material parameters
employed are the same as for Fig 6. Experimental data are from Arruda and Boyce (1990).
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Q) Experimental data.s:::en BPAmodel

Proposed model

0 1.0 2.0
Shear Strain r

Fig 8. Shear stress versus shear strain. The experimental data are from G'Sell and Gopez (1985).
The notation and material parameters employed are the same as for Fig. 6.

Boyce and Arruda, 1990) versus diametral contraction at the symmetric cross-section in
the tension bar shown in Fig. 4(a). Although the maximum values of load predicted by the
BPA model and proposed model are quite close, a discrepancy in the local deformation
behavior over a rather small deformation range is observed. This is attributed to the simple
assumption of an elastic response in the constitutive model, instead of real viscoplastic
response. Good correspondence is observed in all cases over the neck propagation range
with almost constant load. The difference observed in the results from BPA and proposed
models in the later stage ofdeformation is due to the change in the number ofentanglements.

Figure 8 shows the shear stress (J, versus shear strain r relation. Again, due to the
same reason as discussed above, a discrepancy between the theoretical prediction and
experimental results (G'Sell and Gopez, 1985) is observed in the low deformation range.
The computational predictions from the BPA model and proposed model are in good
correspondence up to 0.5 in shear strain. However, overestimation of hardening is observed
in the results from the BPA model. In the proposed model, the competitive effect of the
hardening due to the extension of the polymeric chain and the softening caused by the
disentanglement on the deformation behavior is suitably represented.

These results confirm the capability of the proposed model to predict the deformation
behavior under different stress systems given a set of material parameters. In this respect,
the proposed model is a natural generalization of the well-established models.

4. PARAMETRIC STUDY OF NECK PROPAGATION BEHAVIOR

With the proposed constitutive model, the effect of the introduced material parameter
on the neck propagation behavior will be discussed.

4.1. Computational model
Figure 9 shows the computational model of cylindrical bars under uniform tension at

both ends under a shear free condition. The nominal stress and strain are defined by

2Lu
I

u

x

'--- Of c< F- -~ "l-.__ .Q - f----- _.--F ~ -e-

---L/4
I-- section 2

sectlOn 1

Fig 9. Computational model of tension of circular cylinder. The material parameters employed are
£Is" = 23.6,s"/s,, = l.20,his" = 15.4. AsjT= 65.7. v = 0.30,::1 = 0.0,1'0 = 2.00x lO"s-I,so = 97.3
MPa, T = 296 K. N.\ = 2.74 x 10". In" = 1.71 x 10'6, Co = 7.38 X 10'6, (= 0.005, Inu = In, and
Inl = 1n,/3 where In" is the reference number of entangled points and Co is the reference value of C 1

and c, in eqn (13).
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an = FlrrR; and "n = ul L, respectively. In order to ascertain the starting point of necking,
the following initial geometrical imperfection is introduced:

R = R,,(I-;).I.::I < L4. (15)

where ( is the initial imperfection. The material and computational parameters employed
are Elso = 23.6, ssslso = 1.20. his" = 15.4, As" T = 65.7. \' = 0.30, 'J. = 0.0, 'io = 2.00 X 10 15

s-I, so=97.3 MPa, T=296 K, NA =2.74xl02
". 111,,= 1.71 X 1026

, ('0=7.38xI026
,

( = 0.005, mu = l11a and ml = 111../3 where 111" is the reference number of entanglements and
Co is the reference value of ('I and ('2 in eqn (14). The initial number of entanglements mo

and cj/c2 will be changed to clarify the effect of these values of the neck propagation
behavior. The finite element discretization similar to that shown in Fig. 4 is employed. To
assure precise prediction of deformation behavior including loading and unloading, the
magnitude of the time increment is determined such that J1Ui L = ([i/ L)J1t < 2.5 x 10- 4 for
all computational processes.

4.2. Results and discussion
With c, = C2 = (',n the effect of the initial number of entanglements on the neck propa

gation behavior has been investigated for 111" = 111". 111,,/2 and maO. Figure 10(a) shows the
nominal stress versus elongation due to the present model and BPA model. The overall
deformations are essentially the same as in the case predicted by the phenomenological
constitutive equation (Neale and Tugcu, 1985: Tomita and Hayashi, 1993). The force
attains the maximum value and then falls to the local minimum, with neck localization.
Upon further straining, the neck stabilizes. and neck propagation takes place under approxi
mately steady-state conditions. With a fixed number of total kinks NA. the reduction of nJo

yields an increase in the average number of kinks in a single chain, which causes the relative
reduction of resistance to alignment. Furthermore. the reduction of 1110 contributes to
increase of the number of entanglements through eqn (13). Namely, corresponding values
of (l-molmu ) and (I-mo /1111) for 1110 = 111,1' ma 2 and 111)3 arc O. 1/2.2/3 and -2, -1/2,0,
respectively. All of these lower the nondimensional stress. as shown in Fig. 10(a).

Figure lOeb) indicates the evolution of the radius of specimen RI Ro at cross-section 1
and the triaxiality factor FT which is defined as the ratio of average representative stress to
average axial stress through specimen cross-section 1. The relative radius of specimen R/ R"
decreases uniformly as deformation proceeds and then drops sharply with neck formation.
With neck propagation, it tends to a constant value. The triaxiality factor suddenly decreases
as the load begins to drop from the maximum and attains the minimum. With further
deformation, it increases and asymptotically tends to a constant value. Furthermore, as
discussed by Tomita and Hayashi (1993). the triaxiality factor at cross-section 2 first
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Fig 10. Effect of initial number of entanglements III" on nominal stress versus elongation (a) and
normalized radius and triaxiality factor versus elongation (b). BPA indicates the results based on
the BPA model (Boyce el aI1988). Employed material parameters are the same as in Fig. 9 except Ill",
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Fig II. Nondimensional number of entanglements mimo versus elongation u/L for (a) maim, = 1
and (b) mom" = 12. The notation and material parameters employed are the same as for Fig. 9

except me>"

increases to the maximum value and then decreases to the minimum as the neck propagates.
Subsequently, it tends toward a constant value which is smaller than that of cross-section
I. The triaxiality factor at cross-section far from cross-section I behaves in much the same
way as that at cross-section 2. This implies that the nonuniformity of deformation decreases
as the cross-section approaches cross-section I. Figure IO(b) suggests that a larger-sized
neck propagates and triaxiality increases as rnolrna decreases.

Next, the evolution of the number of entanglements at different cross-sections and
different positions has been investigated for rnolrna = I and 112. Figure II(a) shows the
nondimensional number of entanglements at sections I and 2 in Fig. 9 for rnalrna = I. Due
to the shear deformation, the number of entanglements starts to decrease upon the onset
of necking at cross-sections I and 2. The number of entanglements becomes constant when
the deformation proceeds and necking stops. The reduction of the number ofentanglements
at section 2 is larger than that at section I. which is consistent with the behavior of the
triaxiality factor of cross-section 2. Figure II (b) shows the number of entanglements versus
elongation for maim" = 1/2. Considerable difference is observed compared with the case for
maim" = I. In this case, due to the contribution of normal strain on the increase of the
number of entanglements [see eqn (13)]. entanglements increase as the uniform deformation
proceeds. The increase rate substantially changes with the onset of necking, which is
attributed to the localization of deformation and the contribution of the second term of
eqn (13). In cross-section I, it rapidly increases up to the completion of necking.
Subsequently, when the neck propagates to cross-section 2, the number of entanglements
gradually increases to a maximum then slightly decreases and asymptotically tends to a
constant value. In real polymeric material, the local number of entanglements is distributed
so that depending on the local number of entanglements, it may increase or decrease as the
deformation proceeds.

Finally, the effect of CI!Cl on the deformation behavior has been investigated. Figure
12(a) depicts the nominal stress versus elongation with molma = 1/2, cl/c2 = 1.0
(Cl = C2 = co), = 2.0 (Cl = 2co, Cl = co) and cl/c2 = 0.5 (Cl = co, C2 = 2co)' Comparison
of these three cases clarified that the effect of Cl on the deformation behavior is very small
compared with that of Cl . This is attributed to the characteristic feature of the deformation
in which the predominant deformation mechanism is tension and the contribution of the
second term of eqn (14) is not very marked. Figure 12(b) shows the effect of cl/c2 on the
number of entanglements at the outermost element on the cross-section I. In all cases, since
mo is smaller than rnu the number of entanglements increases with the normal plastic strain,
of which the tendency is magnified with increase of CtiCl' This can be explained by the
above mentioned relation between the chain direction and induced strain. For ctlc2 = 0.5,
the number of entanglements increases up to a maximum and the decreases to a steady
state.
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Fig 12. Effect of c,;c, on nominal stress versus elongation (a) and number of entanglements versus
elongation (b) for m)m" = 1,2. The notation and material parameters employed are the same as for

Fig. 9 except m" and C,C, values.

5. CONCLUSIONS

With the non-Gaussian network model and generalized Argon double-kink model of
intermolecular resistance, a three dimensional constitutive equation for polymeric materials
has been developed. A simple relation between the non-Gaussian molecular chain network
structure and the number of entanglements of chains is formulated and a simple evolutional
equation for the number of entanglements of chains during the deformation process is
developed. Through the comparison between the predicted results and experimentally
obtained results, it has been proven that the proposed constitutive equation has the capa
bility to duplicate the deformation behaviors under different stress conditions given a set
of material parameters.

As an application of the proposed constitutive equation, the tension of cylindrical bars
has been investigated, and the effect of the initial number of entanglements and the type of
evolutional equation of the number of entanglements on the neck propagation behavior
has been briefly discussed.
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